Anna-Carolina Haensch

Logo

Synthetic Data | Multiple Imputation | Big Data in the Social Sciences | R Programming

View My GitHub Profile

LinkedIn | University of Munich | Twitter

Welcome! I am passionate about research on missing data, synthetic data and big data in the social sciences. I also enjoy teaching (a lot) and programming (mostly in R and Python). If you have any questions, please feel free to contact me!

Curriculum vitae

Education

PhD, Sociology 10/2017-06/2021
University of Mannheim, Germany

M. Sc., Survey Statistics 09/2014 – 09/2017
University of Bamberg, Germany

B. A., Political Science/Sociology 09/2011 – 09/2014
Ludwig-Maximilians-Universität (LMU) München, Germany

Professional Experience

Lecturer (Akademische Rätin a.Z.) Since 01/2024
University of Munich
Chair of Statistics and Data Science in Social Sciences and the Humanities

Visiting scholar 04/2023-08/2023
New York University
Wagner School of Public Policy

Postdoctoral researcher 04/2021-12/2023
University of Munich
Chair of Statistics and Data Science in Social Sciences and the Humanities

Assistant professor Since 08/2021
University of Maryland
International Program in Survey and Data Science

Postdoctoral researcher 10/2021 -12/2021
Institute for Employment Research
High-frequency Online Personal Panel (HOPP). Life and work situations in times of Corona

Doctoral researcher 08/2019-02/2021
University of Mannheim
International Program in Survey and Data Science

Doctoral researcher 09/2017-04/2021
GESIS – Leibniz Institute for the Social Sciences

Student assistant 2012 – 2017
Institute for Employment Research: Statistical Methods Centre
Ludwig-Maximilians-Universität (LMU): Chair of Empirical Political Research and Policy Analysis
Leibniz-Institute for Educational Trajectories (LIfBi e.V.)
Statistical Office for the Regions Berlin and Brandenburg: Mikrozensus.

Invited talks

Invited talks

CPSS @ KONVENS 2024 - 13.09.2024 “LLMs in Political and Social Science Research”

DZHW S3 Meeting - 12.06.2024 “Assessing bias in LLM-generated synthetic datasets: examining LLM personas in German and European elections.”

Long Night of the Universities Munich - 23.05.2024 “Of Data, Algorithms and Humans: Generative AI as Social Science Superhero?”

GESIS Lecture Series - 07.12.2023 „Can large language models predict how people vote? Evidence from Germany”

B-IT Lecture Series - 07.12.23 “Can large language models predict how people vote? Evidence from Germany”

NFDI Series Show & Tell - 11.11.22 – Social Media-Daten in der Forschungspraxis II - Things to know when working with reddit data

Selected conference presentations

JSM 2024 - Invited Panel Session: Future of Statistics and Data Science in the Era of ChatGPT and LLMs.

IC2S2 2024 - Oral presentation “Vox Populi, Vox AI? Using Language Models to Estimate German Public Opinion.”

AAPOR 2023 (presented by Leah von der Heyde) - Oral presentation “Vox Populi, Vox AI? Using Language Models to Estimate German Public Opinion.”

BigSurv 2023 - Oral presentation “Seeing ChatGPT Through Students’ Eyes: An Analysis of TikTok Data.”

WSC ISI 2023 - Oral presentation “Why do they leave? Why do they stay? Respondent’s motivation in a German mixed-mode Panel”

Pairfam 2022 (presented by Sebastian Sterl) - “The Whole is More than the Sum of its Parts – Studying Relationship Stability and Social Change by Pooling and Harmonizing Research Data from Various Infrastructures”

Workshop “Sur­­vey Cli­­ma­­te and Trust in Sci­en­­ti­­fic Sur­­veys – Re­­cent De­­ve­­lop­­ments and Con­­tro­­ver­­­si­al Is­­su­es” 2022 - “What do panelists say about their own participation motivation? Semi-automatic classification of an open-ended question on survey motivation”

ESRA 2021 (presented by Sonja Schulz) - “Measuring divorce risk with pooled survey data – A comparison between prospectively and retrospectively collected marriage biographies”

BigSurv 2020 - Oral presentation “Using supervised classification for categorizing answers to an open-ended question on panel participation motivation”

JSM 2018 - Oral presentation “Meta-Analysis of Survey-Based, Non-Experimental Individual Person Data with Heterogeneous Weighting Schemes”

Teaching

Supervised Theses

Seminars (Master/PhD Level)

Seminars (Undergraduate level)

Lecture (Undergraduate level)

Teaching Assistant

Other

Mix

Awards and Stipends

Stipends and Grants

Board Membership

Current working papers and projects

Ma, B. & Wang, X. & Hu, T. & Haensch, A.-C. & Hedderich, M. & Plank, B & Kreuter, F. (2024): The Potential and Challenges of Evaluating Attitudes, Opinions, and Values in Large Language Models.

von der Heyde, L., Haensch, A., & Wenz, A. (2023). Vox Populi, Vox AI? Using Language Models to Estimate German Public Opinion.

von der Heyde, L., Haensch, A., & Wenz, A. (2023). United in Diversity? Contextual Biases in LLM-Based Predictions of the 2024 European Parliament Elections.

Publications

Haensch, A.-C. & Schunck, R. (2024). Multiple imputation for systematically missing partner variables in survey data. Accepted at Sociological Methodology.

Drechsler, J. & Haensch, A.-C. (2024). 30 Years of Synthetic Data. Statistical Science.

Haensch, A.-C., Ball, S., Herklotz, M., & Kreuter, F. (2024). Seeing ChatGPT Through Students’ Eyes: An Analysis of TikTok Data. IEEE BigSurv 2023 Conference Proceedings.

Weiß, Bernd, Sonja Schulz, Lisa Schmid, Sebastian Sterl, Anna-Carolina Haensch. Harmonizing and Synthesizing Partnership Histories from Different German Survey Infrastructures. Chapter 14. In: (Eds. Irina Tomescu-Dubrow, Christof Wolf, Kazimierz M. Slomczynski, J. Craig Jenkins).

Anna-Carolina Haensch, Jonathan Bartlett, Bernd Weiß. Multiple imputation of partially observed covariates in discrete-time survival analysis. In: Sociological Methods & Research.

Haensch, Anna-Carolina, Bernd Weiß, Patricia Steins, Priscilla Chyrva, Katja Bitz. Forthcoming 2022. The semi-automatic categorization of open-ended questions on survey motivation and its reuse for attrition analysis. In: Frontiers in Sociology (Big Data and Machine Learning in Sociology).

Haensch, Anna-Carolina, Jacob Beck, Marie-Lou Sohnius. 2022. UMD survey offers real-time data-driven glimpse into Ukrainian well-being. University of Maryland Social Data Science Center blog.

Haensch, Anna-Carolina, Jacob Beck, Frauke Kreuter. Forthcoming June 2022. Die COVID-19 Trends and Impact Surveys. In: Neue Dimensionen in Data Science. Interdisziplinäre Ansätze und Anwendungen aus Wissenschaft und Wirtschaft (Eds. Barbara Wawrzyniak; Michael Herter).

Haensch, Anna-Carolina; Herklotz, Markus; Keusch, Florian; Kreuter, Frauke. 2021. The international program in survey and data science (IPSDS): a modern study program for working professionals. In: Statistical Journal of the IAOS, Vol. 37, No. 3: pp. 921-933.

Haensch, Anna-Carolina. 2021. Dealing with various flavors of missing data in ex-post survey harmonization and beyond. PhD Dissertation. University of Mannheim.

Haensch, Anna-Carolina, Drechsler, Jörg and Sarah Bernhard. 2020. TippingSens: An R Shiny Application to Facilitate Sensitivity Analysis for Causal Inference Under Confounding. (IAB-Discussion Paper, 29/2020), Nürnberg.

Haensch, Anna-Carolina, Corinna Stöckinger, and Doris Stingl. 2020. “Schluss mit Sterne gucken. Frequentistische Alternativen zum p-Wert.” In: Bad Science: Die dunkle Seite der Statistik (Eds. Rebekka Kluge, Florian Meinfelder).

Haensch, Anna-Carolina, Sonja Schulz, Sebastian Sterl, and Bernd Weiß. 2019. The HaSpaD (Harmonizing and Synthesizing Partnership Histories from Different Research Data Infrastructures) Project. In: Harmonization Newsletter, Vol. 5, No. 1: 20-21.

Kreitzscheck, Mathis, and Anna-Carolina Haensch. 2019. “Klopfet an, so wird euch aufgetan?: Teilnahmeverweigerung und Nonresponse Bias in der fünften Kirchenmitgliedschaftsuntersuchung.” Praktische Theologie 54 (1): 43-51.

Haensch, Anna-Carolina. 2016. “Armutsgefährdung in Berlin und Brandenburg 2014: Eine Analyse nach Lebensformen und Risikolagen.” Zeitschrift für amtliche Statistik Berlin Brandenburg 10 (1): 36-41.

Haensch, Anna-Carolina. 2014. Die Effekte von Koalitionspräferenzen und -erwartungen auf Wahlentscheidungen in Verhätniswahlsystemen. Münchener Beiträge zur Politikwissenschaft.

R package

CTIS. R based Global COVID-19 Trends and Impact Survey Microdata and Opendata API Interface (with Yue Xiong).

Surveys and Data

Pandemic Recovery Survey.)